
The linear approximation of
the λ-calculus:
A new presentation of an old thing

Rémy Cerda
Aix-Marseille Université, I2M (when I did this)
France Travail (now)
CNRS, IRIF (soon)

jww. Lionel Vaux Auclair

LoVe seminar
Villetaneuse, September 26, 2024

Contents

Approximating the λ-calculus?

The continuous approximation

The linear approximation

Approximating the dynamics of the β-reduction

An infinitary λ-calculus

One approximation theorem to rule them all

Let’s get lazy

1/16

Approximating the λ-calculus?

Approximating the λ-calculus?

Historically, a “semantic” motivation:
to approximate the total information generated by𝑀
using finite pieces of information

(“The total information generated by𝑀”: the Böhm tree of𝑀.)

Here, a “syntactic” motivation:
to approximate the total dynamics (“information flow”) of𝑀
using pieces of finite dynamics (“finite information flows”)

2/16

Approximating the λ-calculus?

Historically, a “semantic” motivation:
to approximate the total information generated by𝑀
using finite pieces of information

(“The total information generated by𝑀”: the Böhm tree of𝑀.)

Here, a “syntactic” motivation:
to approximate the total dynamics (“information flow”) of𝑀
using pieces of finite dynamics (“finite information flows”)

2/16

Approximating the λ-calculus?

Historically, a “semantic” motivation:
to approximate the total information generated by𝑀
using finite pieces of information

(“The total information generated by𝑀”: the Böhm tree of𝑀.)

Here, a “syntactic” motivation:
to approximate the total dynamics (“information flow”) of𝑀
using pieces of finite dynamics (“finite information flows”)

2/16

The continuous approximation

“Syntactic” approximation theorem (Wadsworth’78,
Hyland’76, Barendregt):

BT(𝑀) = lim { finite pieces of information
generated by𝑀 }

=⨆{ β⊥-normal λ⊥-term
|||||

𝑀 ⟶∗
𝛽 } .

3/16

The continuous approximation

“Syntactic” approximation theorem (Wadsworth’78,
Hyland’76, Barendregt):

BT(𝑀) = lim { finite pieces of information
generated by𝑀 }

=⨆{ β⊥-normal λ⊥-term
|||||

𝑀 ⟶∗
𝛽 } .

3/16

The linear approximation

“Commutation” theorem (Ehrhard-Regnier’06):

BT(𝑀) ≃ nf (∑ the multilinear
approximants of𝑀)

𝒯(BT(𝑀))nf(𝒯(𝑀)).
... where 𝒯 ∶ Λ⊥ → ? is defined by

𝒯(𝑥) ≔ 𝑥
𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.𝒯(𝑀)

= ∑
𝑠∈𝒯(𝑀)

𝜆𝑥.𝑠

𝒯(𝑀𝑁) ≔ 𝒯(𝑀) ∑
𝑛∈ℕ

1
𝑛!
𝒯(𝑁)𝑛

= ∑
𝑠∈𝒯(𝑀)

∑
𝑛∈ℕ

∑
𝑡1,…,𝑡𝑛∈𝒯(𝑁)

1
𝑛!
𝑠[𝑡1,… , 𝑡𝑛]

𝒯(⊥) ≔ 0
We need: multisets as arguments, sums of terms.

4/16

The linear approximation

“Commutation” theorem (Ehrhard-Regnier’06):

BT(𝑀) ≃ nf (∑ the multilinear
approximants of𝑀)

𝒯(BT(𝑀))

≃ nf(𝒯(𝑀)).

... where 𝒯 ∶ Λ⊥ → ? is defined by
𝒯(𝑥) ≔ 𝑥

𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.𝒯(𝑀)

= ∑
𝑠∈𝒯(𝑀)

𝜆𝑥.𝑠

𝒯(𝑀𝑁) ≔ 𝒯(𝑀) ∑
𝑛∈ℕ

1
𝑛!
𝒯(𝑁)𝑛

= ∑
𝑠∈𝒯(𝑀)

∑
𝑛∈ℕ

∑
𝑡1,…,𝑡𝑛∈𝒯(𝑁)

1
𝑛!
𝑠[𝑡1,… , 𝑡𝑛]

𝒯(⊥) ≔ 0
We need: multisets as arguments, sums of terms.

4/16

The linear approximation

“Commutation” theorem (Ehrhard-Regnier’06):

BT(𝑀) ≃ nf (∑ the multilinear
approximants of𝑀)

𝒯(BT(𝑀)) = nf(𝒯(𝑀)).

... where 𝒯 ∶ Λ⊥ → ? is defined by
𝒯(𝑥) ≔ 𝑥

𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.𝒯(𝑀)

= ∑
𝑠∈𝒯(𝑀)

𝜆𝑥.𝑠

𝒯(𝑀𝑁) ≔ 𝒯(𝑀) ∑
𝑛∈ℕ

1
𝑛!
𝒯(𝑁)𝑛

= ∑
𝑠∈𝒯(𝑀)

∑
𝑛∈ℕ

∑
𝑡1,…,𝑡𝑛∈𝒯(𝑁)

1
𝑛!
𝑠[𝑡1,… , 𝑡𝑛]

𝒯(⊥) ≔ 0
We need: multisets as arguments, sums of terms.

4/16

The linear approximation

“Commutation” theorem (Ehrhard-Regnier’06):

BT(𝑀) ≃ nf (∑ the multilinear
approximants of𝑀)

𝒯(BT(𝑀)) = nf(𝒯(𝑀)).
... where 𝒯 ∶ Λ⊥ → ? is defined by

𝒯(𝑥) ≔ 𝑥
𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.𝒯(𝑀)

= ∑
𝑠∈𝒯(𝑀)

𝜆𝑥.𝑠

𝒯(𝑀𝑁) ≔ 𝒯(𝑀) ∑
𝑛∈ℕ

1
𝑛!
𝒯(𝑁)𝑛

= ∑
𝑠∈𝒯(𝑀)

∑
𝑛∈ℕ

∑
𝑡1,…,𝑡𝑛∈𝒯(𝑁)

1
𝑛!
𝑠[𝑡1,… , 𝑡𝑛]

𝒯(⊥) ≔ 0

We need: multisets as arguments, sums of terms.

4/16

The linear approximation

“Commutation” theorem (Ehrhard-Regnier’06):

BT(𝑀) ≃ nf (∑ the multilinear
approximants of𝑀)

𝒯(BT(𝑀)) = nf(𝒯(𝑀)).
... where 𝒯 ∶ Λ⊥ → ? is defined by

𝒯(𝑥) ≔ 𝑥
𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.𝒯(𝑀) = ∑

𝑠∈𝒯(𝑀)
𝜆𝑥.𝑠

𝒯(𝑀𝑁) ≔ 𝒯(𝑀) ∑
𝑛∈ℕ

1
𝑛!
𝒯(𝑁)𝑛 = ∑

𝑠∈𝒯(𝑀)
∑
𝑛∈ℕ

∑
𝑡1,…,𝑡𝑛∈𝒯(𝑁)

1
𝑛!
𝑠[𝑡1,… , 𝑡𝑛]

𝒯(⊥) ≔ 0

We need: multisets as arguments, sums of terms.

4/16

The linear approximation

“Commutation” theorem (Ehrhard-Regnier’06):

BT(𝑀) ≃ nf (∑ the multilinear
approximants of𝑀)

𝒯(BT(𝑀)) = nf(𝒯(𝑀)).
... where 𝒯 ∶ Λ⊥ → is defined by

𝒯(𝑥) ≔ 𝑥
𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.𝒯(𝑀) = ∑

𝑠∈𝒯(𝑀)
𝜆𝑥.𝑠

𝒯(𝑀𝑁) ≔ 𝒯(𝑀) ∑
𝑛∈ℕ

1
𝑛!
𝒯(𝑁)𝑛 = ∑

𝑠∈𝒯(𝑀)
∑
𝑛∈ℕ

∑
𝑡1,…,𝑡𝑛∈𝒯(𝑁)

1
𝑛!
𝑠[𝑡1,… , 𝑡𝑛]

𝒯(⊥) ≔ 0
We need: multisets as arguments, sums of terms.

4/16

The resource λ-calculus

Resource terms:

𝑠, 𝑡, ... ≔ 𝑥 | 𝜆𝑥.𝑠 | (𝑠) [𝑡1,… , 𝑡𝑛].

Resource reduction, featuring a multilinear substitution:

Excellent properties (confluence, normalisation)!

5/16

The resource λ-calculus

Resource terms:

𝑠, 𝑡, ... ≔ 𝑥 | 𝜆𝑥.𝑠 | (𝑠) [𝑡1,… , 𝑡𝑛].

Resource reduction, featuring a multilinear substitution:

Excellent properties (confluence, normalisation)!

5/16

The resource λ-calculus

Resource terms:

𝑠, 𝑡, ... ≔ 𝑥 | 𝜆𝑥.𝑠 | (𝑠) [𝑡1,… , 𝑡𝑛].

Resource reduction, featuring a multilinear substitution:

Excellent properties (confluence, normalisation)!

5/16

The resource λ-calculus

Finally, 𝐒 −↠r 𝐓 denotes the pointwise reduction (through⟶∗
r)

of possibly infinite sums of resource terms.

nf(𝐒) is the pointwise normal form of 𝐒.
6/16

Approximating the dynamics of
the β-reduction

There’s still something missing

Theorem (Vaux’17):
If𝑀 ⟶∗

𝛽⊥ 𝑁 then 𝒯(𝑀) −↠r 𝒯(𝑁).

This is not enough: we can’t talk about BT(𝑀)...

• We still don’t know what 𝒯(BT(𝑀)) is.
• BT(𝑀)may be infinitely far from𝑀.

7/16

The (001-)infinitary λ-calculus

We want possibly infinite terms and reductions of a certain shape:

8/16

The (001-)infinitary λ-calculus

001-infinitary λ-terms, definition 1:

𝑥 ∈ 𝒱
𝑥 ∈ Λ001

⊥

𝑥 ∈ 𝒱 𝑀 ∈ Λ001
⊥

𝜆𝑥.𝑀 ∈ Λ001
⊥ ⊥ ∈ Λ001

⊥

𝑀 ∈ Λ001
⊥ ▹ 𝑁 ∈ Λ001

⊥

𝑀𝑁 ∈ Λ001
⊥

𝑁 ∈ Λ001
⊥

▹ 𝑁 ∈ Λ001
⊥

and we quotient by α-equivalence.

001-infinitary λ-terms, definition 2:

Λ001
⊥ ≔ ν𝑌.µ𝑋.𝒱 + (𝒱 × 𝑋) + (𝑋 × 𝑌) + ⊥

in the category of nominal sets (see C.’24).

9/16

The (001-)infinitary λ-calculus

001-infinitary closure of⟶𝛽:

𝑀 ⟶∗
𝛽 𝑥

𝑀 ⟶001
𝛽 𝑥

𝑀 ⟶∗
𝛽 𝜆𝑥.𝑃 𝑃 ⟶001

𝛽 𝑃′

𝑀 ⟶001
𝛽 𝜆𝑥.𝑃′

𝑀 ⟶∗
𝛽 (𝑃)𝑄 𝑃 ⟶001

𝛽 𝑃′ ▹ 𝑄⟶001
𝛽 𝑄′

𝑀 ⟶001
𝛽 (𝑃′)𝑄′

𝑄⟶001
𝛽 𝑄′

▹ 𝑄⟶001
𝛽 𝑄′

Theorem (Kennaway et al.’97):
⟶∞

𝛽⊥ is confluent, and the unique normal form of any𝑀 ∈ Λ001
⊥

through⟶001
𝛽⊥ is BT(𝑀).

10/16

The (001-)infinitary λ-calculus

001-infinitary closure of⟶𝛽:

𝑀 ⟶∗
𝛽 𝑥

𝑀 ⟶001
𝛽 𝑥

𝑀 ⟶∗
𝛽 𝜆𝑥.𝑃 𝑃 ⟶001

𝛽 𝑃′

𝑀 ⟶001
𝛽 𝜆𝑥.𝑃′

𝑀 ⟶∗
𝛽 (𝑃)𝑄 𝑃 ⟶001

𝛽 𝑃′ ▹ 𝑄⟶001
𝛽 𝑄′

𝑀 ⟶001
𝛽 (𝑃′)𝑄′

𝑄⟶001
𝛽 𝑄′

▹ 𝑄⟶001
𝛽 𝑄′

Theorem (Kennaway et al.’97):
⟶∞

𝛽⊥ is confluent, and the unique normal form of any𝑀 ∈ Λ001
⊥

through⟶001
𝛽⊥ is BT(𝑀).

10/16

One approximation theorem to rule them all

𝒯 ∶ Λ001
⊥ → 𝕊Λr is defined (almost) as on finite terms (!).

“Simulation” theorem (C.-V.A.’23, C.’24):
If𝑀 ⟶∞

𝛽⊥ 𝑁 then 𝒯(𝑀) −↠r 𝒯(𝑁).

All the previous ones are easy consequences:

simulation
theorem

commutation
theorem

confluence
of⟶∞

𝛽⊥

syntactic approx.
theorem

11/16

One approximation theorem to rule them all

𝒯 ∶ Λ001
⊥ → 𝕊Λr is defined (almost) as on finite terms (!).

“Simulation” theorem (C.-V.A.’23, C.’24):
If𝑀 ⟶∞

𝛽⊥ 𝑁 then 𝒯(𝑀) −↠r 𝒯(𝑁).

All the previous ones are easy consequences:

simulation
theorem

commutation
theorem

confluence
of⟶∞

𝛽⊥

syntactic approx.
theorem

11/16

(Arguably) easier proofs, in a unified setting

And there’s more!

Corollary
𝑀 has a hnf through⟶∗

𝛽 or⟶001
𝛽

iff the head reduction strategy terminates on𝑀
iff nf(𝒯(𝑀)) ≠ 0.

Corollary
The Genericity lemma.

Corollary
BT ∶ Λ001

⊥ → Λ001
⊥ is Scott-continuous.

12/16

Let’s get lazy

Let’s get lazy

The lazy setting:

head normal forms → weak head normal forms
Böhm trees → Lévy-Longo trees

Λ001
⊥ → Λ101

⊥
⟶001

𝛽⊥ → ⟶101
𝛽⊥

Example: Y𝜆𝑦.𝜆𝑥.𝑦 ⟶∗
𝛽 𝜆𝑥.Y𝜆𝑦.𝜆𝑥.𝑦 is such that:

BT(Y𝜆𝑦.𝜆𝑥.𝑦) = ⊥ LLT(Y𝜆𝑦.𝜆𝑥.𝑦) = O = 𝜆𝑥0.𝜆𝑥1.𝜆𝑥2.…

13/16

A lazy Taylor approximation

The lazy resource λ-calculus:

𝑠, 𝑡, ... ≔ 𝑥 | 𝜆𝑥.𝑠 | 𝟘 | (𝑠) [𝑡1,… , 𝑡𝑛],

with (𝟘) ̄𝑡 ⟶r 0 and ℓ𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.ℓ𝒯(𝑀) + 𝟘.

Theorem (simulation)
If𝑀 ⟶101

𝛽⊥ 𝑁 then ℓ𝒯(𝑀) −↠ℓr ℓ𝒯(𝑁).

Corollary (commutation)
nf(ℓ𝒯(𝑀)) = ℓ𝒯(LLT(𝑀)).

Theorem (Severi-de Vries’05)
Only BT and LLT are Scott-continuous.

14/16

A lazy Taylor approximation, and nothing more

The lazy resource λ-calculus:

𝑠, 𝑡, ... ≔ 𝑥 | 𝜆𝑥.𝑠 | 𝟘 | (𝑠) [𝑡1,… , 𝑡𝑛],

with (𝟘) ̄𝑡 ⟶r 0 and ℓ𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.ℓ𝒯(𝑀) + 𝟘.

Theorem (simulation)
If𝑀 ⟶101

𝛽⊥ 𝑁 then ℓ𝒯(𝑀) −↠ℓr ℓ𝒯(𝑁).

Corollary (commutation)
nf(ℓ𝒯(𝑀)) = ℓ𝒯(LLT(𝑀)).

Theorem (Severi-de Vries’05)
Only BT and LLT are Scott-continuous.

14/16

Conclusion

Linear approximation in a

• canonical,
• general,

presentation.

Slogan: treat infinitary stuff in an infinitary way!

What about...

• handling 𝜂-conversion?
• richer settings?
• cut-elimination in non-wellfounded proofs?

15/16

Thanks for your attention!
16/16

	Approximating the λ-calculus?
	The continuous approximation
	The linear approximation

	Approximating the dynamics of the β-reduction
	An infinitary λ-calculus
	One approximation theorem to rule them all

	Let's get lazy

