The linear approximation of the λ -calculus: A new presentation of an old thing

Rémy Cerda Aix-Marseille Université, I2M (when I did this) France Travail (now) CNRS, IRIF (soon)

jww. Lionel Vaux Auclair

LoVe seminar Villetaneuse, September 26, 2024 Approximating the λ -calculus? The continuous approximation The linear approximation Approximating the dynamics of the β -reduction An infinitary λ -calculus One approximation theorem to rule them all

Let's get lazy

APPROXIMATING THE \lambda-CALCULUS?

Historically, a "semantic" motivation: to approximate the total information generated by *M* using finite pieces of information

Historically, a "semantic" motivation: to approximate the total information generated by *M* using finite pieces of information

("The total information generated by *M*": the **Böhm tree** of *M*.)

Historically, a "semantic" motivation: to approximate the total information generated by *M* using finite pieces of information

("The total information generated by *M*": the **Böhm tree** of *M*.)

Here, a "syntactic" motivation:

to approximate the total dynamics ("information flow") of *M* using pieces of finite dynamics ("finite information flows")

"Syntactic" approximation theorem (Wadsworth'78, Hyland'76, Barendregt):

 $BT(M) = \lim \left\{ \begin{array}{c} \text{finite pieces of information} \\ \text{generated by } M \end{array} \right\}$

"Syntactic" approximation theorem (Wadsworth'78, Hyland'76, Barendregt):

 $BT(M) = \lim \left\{ \begin{array}{c} \text{finite pieces of information} \\ \text{generated by } M \end{array} \right\}$ $= \bigsqcup \left\{ \bigwedge \beta \bot \text{-normal } \lambda \bot \text{-term} \quad \middle| \quad M \longrightarrow_{\beta}^{*} \bigwedge \right\}.$

 $BT(M) \simeq nf\left(\sum_{\text{approximants of } M} \text{the multilinear}\right)$

 $BT(M) \simeq nf\left(\sum_{\substack{\text{opproximates of } M}} \frac{\text{the multilinear}}{approximates of } M\right)$ $\simeq nf(\mathcal{F}(M)).$

 $BT(M) \simeq nf\left(\sum_{\substack{n \in \mathcal{T}(M)}} \frac{\text{the multilinear}}{n \text{ approximants of } M}\right)$ $\mathcal{T}(BT(M)) = nf(\mathcal{T}(M)).$

 $BT(M) \simeq nf\left(\sum_{\text{approximants of } M} \text{the multilinear}\right)$

 $\mathcal{T}(\mathrm{BT}(M)) = \mathrm{nf}(\mathcal{T}(M)).$

... where $\mathcal{T} : \Lambda_{\perp} \to ?$ is defined by

 $\mathcal{T}(x) \coloneqq x$ $\mathcal{T}(\lambda x.M) \coloneqq \lambda x.\mathcal{T}(M)$

 $\begin{aligned} \mathcal{F}(MN) &\coloneqq \mathcal{F}(M) \sum_{n \in \mathbb{N}} \frac{1}{n!} \mathcal{F}(N)^n \\ \mathcal{F}(\bot) &\coloneqq 0 \end{aligned}$

"Commutation" theorem (Ehrhard-Regnier'06): $BT(M) \simeq nf\left(\sum_{\text{approximants of } M} \text{the multilinear}\right)$ $\mathcal{T}(\mathrm{BT}(M)) = \mathrm{nf}(\mathcal{T}(M)).$... where $\mathcal{T} : \Lambda_{\perp} \to ?$ is defined by $\mathcal{T}(x) \coloneqq x$ $\begin{aligned} \mathcal{T}(\lambda x.M) &\coloneqq \lambda x.\mathcal{T}(M) \\ \mathcal{T}(MN) &\coloneqq \mathcal{T}(M) \sum_{n \in \mathbb{N}} \frac{1}{n!} \mathcal{T}(N)^n = \sum_{s \in \mathcal{T}(M)} \sum_{n \in \mathbb{N}} \sum_{t_1, \dots, t_n \in \mathcal{T}(N)} \frac{1}{n!} s[t_1, \dots, t_n] \end{aligned}$ $\mathcal{T}(\lambda x.M) \coloneqq \lambda x.\mathcal{T}(M)$ $\mathcal{T}(\bot) \coloneqq 0$

"Commutation" theorem (Ehrhard-Regnier'06): $BT(M) \simeq nf\left(\sum_{\text{approximants of } M} \text{the multilinear}\right)$ $\mathcal{T}(\mathrm{BT}(M)) = \mathrm{nf}(\mathcal{T}(M)).$... where $\mathcal{T} : \Lambda_{\perp} \to \text{is defined by}$ $\mathcal{T}(x) \coloneqq x$ $\begin{array}{c} \mathcal{F}(\lambda x.M) \coloneqq \lambda x.\mathcal{F}(M) \\ \mathcal{F}(MN) \coloneqq \mathcal{F}(M) \sum_{n \in \mathbb{N}} \frac{1}{n!} \mathcal{F}(N)^n = \sum_{s \in \mathcal{F}(M)} \sum_{n \in \mathbb{N}} \sum_{t_1, \dots, t_n \in \mathcal{F}(N)} \frac{1}{n!} s[t_1, \dots, t_n] \end{array}$ $\mathcal{T}(\bot) \coloneqq 0$

We need: multisets as arguments, sums of terms.

Resource terms:

$$s, t, \dots := x \mid \lambda x.s \mid (s) [t_1, \dots, t_n].$$

Resource reduction, featuring a multilinear substitution:

Resource terms:

$$s, t, \dots := x \mid \lambda x.s \mid (s) [t_1, \dots, t_n].$$

Resource reduction, featuring a multilinear substitution:

Resource terms:

$$s, t, \dots := x \mid \lambda x.s \mid (s) [t_1, \dots, t_n].$$

Resource reduction, featuring a multilinear substitution:

Excellent properties (confluence, normalisation)!

The resource λ -calculus

Finally, $\mathbf{S} \longrightarrow_{\mathbf{r}} \mathbf{T}$ denotes the pointwise reduction (through $\longrightarrow_{\mathbf{r}}^{*}$) of possibly infinite sums of resource terms.

nf(S) is the pointwise normal form of S.

Approximating the dynamics of the β -reduction

Theorem (Vaux'17):

If $M \longrightarrow_{\beta \perp}^{*} N$ then $\mathcal{T}(M) \longrightarrow_{\mathrm{r}} \mathcal{T}(N)$.

This is not enough: we can't talk about BT(M)...

- We still don't know what $\mathcal{T}(BT(M))$ is.
- BT(*M*) may be infinitely far from *M*.

We want possibly infinite terms and reductions of a certain shape:

001-infinitary λ -terms, definition 1:

$x\in \mathcal{V}$	$x \in \mathcal{V}$	$M \in \Lambda^{001}_{\perp}$	
$x\in\Lambda_{\perp}^{001}$	λx.M	$\in \Lambda^{001}_{\!\!\perp}$	$\bot \in \Lambda^{001}_{\bot}$
$M\in \Lambda_{\perp}^{001}$	$\triangleright N \in$	Λ_{ot}^{001}	$N\in\Lambda_{\perp}^{001}$
$MN \in \Lambda^{001}_{\perp}$			$\overline{\triangleright N \in \Lambda^{001}_{\perp}}$

and we quotient by α -equivalence.

001-infinitary λ -terms, definition 2:

 $\Lambda_{\perp}^{001} \coloneqq \mathbb{P}Y.\mathbb{P}X.\mathcal{V} + (\mathcal{V} \times X) + (X \times \overline{Y}) + \bot$

in the category of nominal sets (see C.'24).

001-infinitary closure of \longrightarrow_{β} :

$$\frac{M \longrightarrow_{\beta}^{*} x}{M \longrightarrow_{\beta}^{001} x} \qquad \frac{M \longrightarrow_{\beta}^{*} \lambda x.P \qquad P \longrightarrow_{\beta}^{001} P'}{M \longrightarrow_{\beta}^{001} \lambda x.P'} \\
\frac{M \longrightarrow_{\beta}^{*} (P)Q \qquad P \longrightarrow_{\beta}^{001} P' \qquad \triangleright Q \longrightarrow_{\beta}^{001} Q'}{M \longrightarrow_{\beta}^{001} (P')Q'} \\
\frac{Q \longrightarrow_{\beta}^{001} Q'}{\eqsim Q \longrightarrow_{\beta}^{001} Q'}$$

001-infinitary closure of \longrightarrow_{β} :

$$\frac{M \longrightarrow_{\beta}^{*} x}{M \longrightarrow_{\beta}^{001} x} \qquad \frac{M \longrightarrow_{\beta}^{*} \lambda x.P \qquad P \longrightarrow_{\beta}^{001} P'}{M \longrightarrow_{\beta}^{001} \lambda x.P'} \\
\frac{M \longrightarrow_{\beta}^{*} (P)Q \qquad P \longrightarrow_{\beta}^{001} P' \qquad \triangleright Q \longrightarrow_{\beta}^{001} Q'}{M \longrightarrow_{\beta}^{001} (P')Q'} \\
\frac{Q \longrightarrow_{\beta}^{001} Q'}{\eqsim Q \longrightarrow_{\beta}^{001} Q'}$$

Theorem (Kennaway et al.'97):

 $\longrightarrow_{\beta\perp}^{\infty}$ is confluent, and the unique normal form of any $M \in \Lambda_{\perp}^{001}$ through $\longrightarrow_{\beta\perp}^{001}$ is BT(*M*).

ONE APPROXIMATION THEOREM TO RULE THEM ALL

 $\mathcal{T}: \Lambda_{\perp}^{001} \to \mathbb{S}^{\Lambda_{r}}$ is defined (almost) as on finite terms (!).

ONE APPROXIMATION THEOREM TO RULE THEM ALL

 $\mathcal{T}: \Lambda_{\perp}^{001} \to \mathbb{S}^{\Lambda_{r}}$ is defined (almost) as on finite terms (!).

"Simulation" theorem (C.-V.A.'23, C.'24): If $M \longrightarrow_{\beta \perp}^{\infty} N$ then $\mathcal{T}(M) \xrightarrow{}_{r} \mathcal{T}(N)$.

All the previous ones are easy consequences:

And there's more!

Corollary

M has a HNF through $\longrightarrow_{\beta}^{*}$ or $\longrightarrow_{\beta}^{001}$ iff the head reduction strategy terminates on *M* iff nf($\mathcal{T}(M)$) $\neq 0$.

Corollary

The Genericity lemma.

Corollary

BT : $\Lambda_{\perp}^{001} \rightarrow \Lambda_{\perp}^{001}$ is Scott-continuous.

LET'S GET LAZY

The lazy setting:

head normal forms \rightarrow weak head normal forms Böhm trees \rightarrow Lévy-Longo trees $\Lambda_{\perp}^{001} \rightarrow \Lambda_{\perp}^{101}$ $\rightarrow \beta_{\perp}^{001} \rightarrow \rightarrow \beta_{\perp}^{101}$

Example: $Y_{\lambda y,\lambda x,y} \longrightarrow_{\beta}^{*} \lambda x. Y_{\lambda y,\lambda x,y}$ is such that:

 $BT(Y_{\lambda y,\lambda x,y}) = \bot \qquad LLT(Y_{\lambda y,\lambda x,y}) = 0 = \lambda x_0.\lambda x_1.\lambda x_2...$

The lazy resource λ-calculus:

$$s, t, \dots := x \mid \lambda x.s \mid \mathbf{0} \mid (s)[t_1, \dots, t_n],$$

with $(0)\bar{t} \longrightarrow_{\mathrm{r}} 0$ and $\ell \mathcal{T}(\lambda x.M) \coloneqq \lambda x.\ell \mathcal{T}(M) + 0$.

Theorem (simulation)

If $M \longrightarrow_{\beta \perp}^{101} N$ then $\ell \mathcal{T}(M) \longrightarrow_{\ell r} \ell \mathcal{T}(N)$.

Corollary (commutation) $nf(\ell \mathcal{T}(M)) = \ell \mathcal{T}(LLT(M)).$ The lazy resource λ-calculus:

$$s, t, \dots := x \mid \lambda x.s \mid \mathbf{0} \mid (s)[t_1, \dots, t_n],$$

with $(0)\bar{t} \longrightarrow_{\mathrm{r}} 0$ and $\ell \mathcal{T}(\lambda x.M) \coloneqq \lambda x.\ell \mathcal{T}(M) + 0$.

Theorem (simulation) If $M \longrightarrow_{\beta \perp}^{101} N$ then $\ell \mathcal{T}(M) \longrightarrow_{\ell r} \ell \mathcal{T}(N)$. **Corollary (commutation)**

 $nf(\ell \mathcal{T}(M)) = \ell \mathcal{T}(LLT(M)).$

Theorem (Severi-de Vries'05) Only BT and LLT are Scott-continuous.

CONCLUSION

Linear approximation in a

- canonical,
- general,

presentation.

Slogan: treat infinitary stuff in an infinitary way!

What about...

- handling η-conversion?
- richer settings?
- cut-elimination in non-wellfounded proofs?

Thanks for your attention!